Study on Downhole Geomagnetic Suitability Problems Based on Improved Back Propagation Neural Network

نویسندگان

چکیده

The analysis of geomagnetic suitability is the basis and premise matching navigation positioning. A evaluation model using mixed sampling an improved back propagation neural network (BPNN) based on gray wolf optimization (GWO) algorithm by incorporating dimension learning-based hunting (DLH) search strategy was proposed in this paper to accurately assess suitability. Compared with traditional model, its generalization ability accuracy were better improved. Firstly, key indicators labels used for analyzed, system established. Then, a method synthetic minority over-sampling technique (SMOTE) Tomek Links employed extend original dataset construct new dataset. Next, divided into training set test set, according 7:3. standard deviation, kurtosis coefficient, skewness information entropy, roughness, variance correlation coefficient as input put DLH-GWO-BPNN output. Accuracy, recall, ROC curve, AUC value taken indexes. Finally, PSO (Particle Swarm Optimization)-BPNN, WOA (Whale Optimization Algorithm)-BPNN, GA (Genetic GWO-BPNN algorithms selected compared methods verify predictable DLH-GWO-BPNN. ranking five models follows: PSO-BPNN (80.95 %) = WOA-BPNN (80.95%) < GA-BPNN (85.71%) (95.24%). results indicate that can be reliable underground research, which applied research navigation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assembly Quality Prediction Based on Back- propagation Artificial Neural Network

Because of the severe geometrical distortion induced by the optical system and the limited kinetic accuracy of mechanical system in the vision-based mobile-phone lens’s assembly system, the nonlinear, perspective distortion errors and the kinematics errors generally exist in the assembly process of the mobile-phone lens. It is necessary to predict the assembly quality of the vision-based mobile...

متن کامل

Back Propagation Neural Network based Gait Recognition

We describe a new method for recognizing humans by their gait using back propagation neural network(BPNN), BPNN algorithm is used to recognize humans by their gait patterns. Automatic gait recognition using Fourier descriptors and independent component analysis (ICA) for the purpose of human identification at a distance. Firstly, a simple background generation algorithm is introduced to subtrac...

متن کامل

An Improved Back Propagation Neural Network Model and Its Application

Abstrac—t-Stroke is one of the most serious disease, and the incidence rate of stroke is confirmed to be related to environmental factors including temperature, pressure and humidity .In order to obtain the relationship between the incidence rate and environmental factors , we research on local daily meteorological data and stroke disease cases from January 2008 to December 2012, which is provi...

متن کامل

study of hash functions based on chaotic maps

توابع درهم نقش بسیار مهم در سیستم های رمزنگاری و پروتکل های امنیتی دارند. در سیستم های رمزنگاری برای دستیابی به احراز درستی و اصالت داده دو روش مورد استفاده قرار می گیرند که عبارتند از توابع رمزنگاری کلیددار و توابع درهم ساز. توابع درهم ساز، توابعی هستند که هر متن با طول دلخواه را به دنباله ای با طول ثابت تبدیل می کنند. از جمله پرکاربردترین و معروف ترین توابع درهم می توان توابع درهم ساز md4, md...

A Survey on Crop Prediction using Back Propagation Neural Network

The aim of this research is to develop a farmer prediction system to identify crop suitable for particular soil. To achieve this Neural Network should be trained to perform correct prediction for farmers. After the network has been properly trained, it can be used to identify the crop suitable for particular type of soil. The Artificial neural networks are relatively crude electronic networks o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronics

سال: 2023

ISSN: ['2079-9292']

DOI: https://doi.org/10.3390/electronics12112520